Growing And Enjoying Lachenalia

Don Journet

There are many cultivated plant genera whose species are poorly represented in the commercial world of garden plants. In some cases this is well justified, as not all species would be considered worthy of inclusion in the garden. In other genera the species have been crossbred to such an extent as to render the species quite rare in gardens e.g. Rosa. The hybrids and cultivars have been altered to such an extent that on a cursory glance they hardly resemble the distant parents. In the case of the many genera of South African bulbous, cormous and tuberous plants the neglect of the species can hardly be justified. I might be heavily biased as a grower of these plants but I consider many of them are quite charming and a delight to the eye. One such genus is *Lachenalia*, which is probably only represented commercially by at most ten species, especially here in Australia.

Graham Duncan, Horticulturist at Kirstenbosch National Botanic Gardens, South Africa now lists 117 species in the genus *Lachenalia*. This includes the small genus *Polyxena* that, as a result of genetic investigations, is likely to be absorbed into *Lachenalia* in the not too distant future.

History

First we will start with the formal citation. *Lachenalia* Jacq. f. Murray. Liliaceae (Hyacinthaceae). This tells us that the name Lachenalia was first used by Joseph Franz Jacquin but was actually first published by J. A. Murray. For many years *Lachenalia* was included in the Family Liliaceae but has relatively recently been placed in a new family Hyacinthaceae. Jacquin used the name *Lachenalia* in honour of Werner de Lachenal – an eminent Swiss botanist and a professor at Basel in Switzerland.

For a more detailed discussion of the historical background of the genus see G.D. Duncan’s *The Lachenalia Handbook* published by the National Botanic Gardens at Kirstenbosch.

Culture

In their native southern Africa *Lachenalia* are to be found growing in a range of climatic conditions and soils from almost pure sand to heavy clay; from humus rich to mineral rich; and from dry to seasonally inundated (see Duncan 1988). As a result one might imagine that growing these delightful bulbs could be a nightmare, but fortunately they seem to be quite accommodating provided certain rules are observed. Those that grow in dry sandy areas do not like to be kept very wet and those from heavy moist soils do not like to completely dry out mid season. The answer seems to be to maintain a happy medium and perhaps to give one or two species special attention. If a well-drained growing medium is used and regular watering carried out during the growing season most species will reward the grower with delightful flowers and either seed or small bulbs or both.

As I have a collection of some 90 different species, hybrids, cultivars and variations I find it necessary to keep the majority in pots. This enables me to keep the bulbs dry in summer when other plants need watering and to place them in suitably protected areas of the garden in winter when they require good growing conditions.

I live in south-eastern Australia in the state of Victoria about 32 miles (50km) west of Melbourne at the base of the Great Dividing Range. The grid reference is 144° 25′ E and 37° 40′ S and the USDA hardiness rating would be probably closest to 9b. We occasionally get winter temperatures down to -5°C (23°F) and summer temperatures can exceed 40°C (104°F) for several consecutive days. I must emphasise that the minimum temperature is only sustained for a short period, usually just before dawn, but we can get sub zero temperatures for the best part of the night. We certainly do not suffer from frozen ground and the ice on puddles lasts for a short time only as the temperature soon rises above freezing. To protect my *Lachenalia* I position them under the north-eastern and northern overhang of *Eucalyptus* trees where they will get full winter sunlight, but ice crystals formed in the air will not fall on their leaves. There is no question that the plants experience temperatures below freezing but they all seem to survive. I do try to avoid watering the pots in the evening when there is a forecast of frost.

The growing medium that I use for mature bulbs is based upon a soil-less potting mix obtained locally consisting of aged ground pine bark to which has been added course sand. To 6 parts of the basic mix I add 6 parts of course sand, 2 parts of clay loam and 2 parts of well-rotted cow manure. A small quantity of a
mixture of about one quarter of a part each of dolomite and blood and bone is added. The intention here is to add material that will tend to stop the mixture becoming too acid and add slow release fertilizer to sustain healthy growth over the long season. For species that require better drainage I double or in some cases treble the amount of course sand. Another technique I have used for bulbs that seem prone to rotting is to place the bulbs in pure sand above the regular potting mix. The roots find their way through the sand and into the more nutrient rich mix below. This way the proportion of air around the bulbs is increased and risk of rotting reduced. A potentially serious problem arising after the dormant period is the difficulty experienced in wetting the soil less potting mixes. The clay loam is added in an attempt to buffer the mix against low pH values and to enable the potting mix to re-wet after the dormant period. In particular dry years I am suspicious that I have lost collection material simply because the bulbs have never received enough moisture to begin growth or sustain growth for a long enough period.

Propagation

The methods available for the propagation of *Lachenalia* are probably as varied as almost any other bulbous plant. These include seed, bulbils, offsets, division, leaf cuttings, scaling, micro-propagation and tissue culture.

Sexual Propagation

Seed

The principle means by which *Lachenalia* are propagated would have to be from seed. It is, after all, the chief mechanism by which plants spread and practically the only way they can adapt to changing environmental conditions. For collectors, growers, hybridists etc this usually small, but occasionally large, change in morphology can be cause for joy or disappointment depending upon whether you are looking for new hybrids or trying to maintain species integrity. In order to maintain unaltered species or hybrid characteristics one needs to use a vegetative means of reproduction such as separating offsets, bulbils, division, scaling, micro-propagation and taking cuttings.

Growing from seed has the advantage that it maintains the small variations that exist within a species and which are responsible for hybrid vigour. These variations are found quite naturally in plants within a community that have propagated by sexual means, that is by seed. A number of growers have noticed that their specimens of *Lachenalia* lose vigour over time and this is thought to be due to virus which may invade the plant but not cause dramatic visual effects. To maintain integrity of species when propagating from seed one might try housing groups of the same species in cages made of a fly proof netting as this will almost guarantee no crossing outside the cage. However there will be few if any pollinators in the cage and hand pollination will have to be carried out.

Seed of *Lachenalia* seems moderately easy to grow. The germination process has no hidden requirements such as stratification and if planted in autumn (fall) in cool conditions germination will follow. The main aim should be to provide as long a growing season as possible. The seedling bulbs have a much greater chance of surviving the first dormant period if they are as large and plump as possible without being too 'soft' i.e. not forced with too much nitrogenous fertilizer. In the southern hemisphere I have successfully grown bulbs from seed planted at times from February through to July. During this time I keep them frost free and perhaps just as important when spring arrives, keep them cool and out of hot midday sun.

In my first few years growing this genus from seed I made my own growing media from coarse sand, peat and a little loam as a pH buffer. Later I tried some proprietary seed raising mix and found the results seemed no better or worse, only easier. I have continued to use this mix. The main criterion seems to be to try to keep the compost moist but not wet. After watering I leave the containers to become almost dry before giving further water.

I sow small quantities of seed in half pots with seed separated by about 1 to 2 cm (½ to 1 inch) and just covered with compost or sand. The ideal time to sow seed here is March to May. If I sow seed later I find it advisable to try to extend the growing season by being very vigilant in keeping the environment cool and with enough moisture as we progress into spring. Allowing the seedlings to become excessively hot or dry will induce premature dormancy or death. Very small bulbs are difficult to store dry through summer to autumn. When the plants become dormant and the leaves have died back I try to find out how large the bulbs have become. Bulbs over about 4mm (0.2ins.) are lifted and stored being replanted next autumn. If the bulbs are small to very small, say around 2mm (0.1ins.), I tend to leave them in the same pot for a further season. The small plants will need feeding and I use a liquid that is relatively low in nitrogen, as I do not wish to encourage high growth rate at the expense of good bulb structure.

Seed seems to store fairly well and will stay viable for at least five years at room temperature (Duncan 1988). I have also heard of seed being viable after eight
years. I am just trying seed stored for nine years and will have to report back on the Bulb Forum.

Asexual Propagation

This includes all vegetative methods of propagation. All these methods except perhaps the use of tissue culture have the disadvantage that any virus contained in the parent is almost certain to be passed to the progeny.

Bulbils, Offsets and Division

Through the 110 species of Lachenalia there is wide variation in inclination to produce offsets. Some like the *L. aloides* group produce a profusion of bulbils that look similar to grains of rice. Other species have a tendency to produce offsets or side bulbs that can vary greatly in size, and yet others divide into two or more relatively similar sized bulbs. Some seem to not reproduce by these means at all but compensate by being prolific seed producers.

Bulbils may be produced in relative profusion around the parent bulb or may result from damage to the leaf bases or bulb scales. A number of species may occasionally produce bulbils on the top of an inflorescence (very top of the rachis) or on the edge of a leaf. *L. bulbifera*, as its name suggests, can produce bulbils at or above ground and others like *L. namaquensis* and *L. moniliformis* produce long stolons or underground stems to push the bulbils away from the parent.

The small bulbils are treated much like seed and will produce year old bulbs that will be similar in size to one-year-old seedlings that have had a full season to develop.

Depending upon size, offsets may flower in the first year of separation from the parent bulb, or may require a further year of growing on to achieve a first flowering.

Division seems to occur when the bulbs reach a certain size and may result in the bulb dividing into two or more bulbs of roughly equal size. Frequently the resulting bulbs are sufficiently large to flower in the first season after separation.

Leaf Cuttings

An interesting method of propagation is the use of leaf cuttings in a similar fashion to those taken in the genus *Veltheimia*. The simplest method is to take a mature leaf at about the climax of its growth and well before it becomes senescent. For proteranthus species, i.e. those that flower after the leaves have matured, the leaf cutting is taken just before flowering commences. The leaf is cut off near the base and placed upright in sharp sand with the base at a depth of between 2 and 5 cm (1 to 2 ins.). Variations on the striking medium can include vermiculite and/or peat moss mixed with sharp sand at a ratio of about 1 part vermiculite or peat to 3 parts sand. The containers are then placed in a cool spot out of direct sunlight. The number of bulbils formed and their size will depend upon the length of cut surface and the size of leaf material used. This method most suits the broad-leaved species and cultivars with the grass-like leaved species being less successful. To obtain a greater number of small bulbs the leaf may be cut into a number of cross-sections although the sections farthest from the base of the leaf seem to be more reluctant to produce bulbils. Personally I do not subdivide the leaf in the hope that the bulbils produced will be larger and reach flowering size sooner. With a leaf cutting taken at the optimum time some of the resulting bulbs may be large enough to flower in the next season. Thus by using this technique, flowering size bulbs may be produced one year ahead of seed produced plants.

I have also noticed bulbils being formed at points where leaves have been damaged – usually below soil level. This may be a technique worth trying with species that do not readily produce bulbils or do not divide readily. The stress produced on the parent bulb is far less and one has little to lose but something to gain.

Chipping

Propagation by such techniques as chipping has been carried out successfully on some horticulturally significant species that are shy of division or bulbil production. Although I have not tried this technique I have noticed bulbils being produced upon damaged
bulbs. Pest damage sometimes removes substantial amounts of the bulb either from the outside or sometimes in the bulbs centre. In these cases I have noticed small bulbs being produced at the damaged surfaces sometimes while still in the pots during the dormant period or while in storage.

Micro-propagation

In this method of propagation very small portions of the growing tip of plants are cultured under sterile conditions in a test tube. This is known as tissue culture and for the genus *Lachenalia* in which leaves can be induced to produce the required growth tip it is possible for the whole procedure to be carried out by using a small section of leaf. Nel 1983 (see references) described a process whereby 2000 plants were produced in 8 months from a single leaf using 1cm² pieces.

This procedure is clearly out side the scope of many amateur propagators but for the sake of completeness I thought it worth mentioning. Having said this I have read of amateurs setting up a system in the home that has been partially successful although I cannot find the reference.

Pest and Diseases

Virus

The genus seems reasonably free from most problems except the dreaded ornithogalum mosaic virus. The vector for transmitting this virus is probably sap sucking insects such as aphids. As these pests are very difficult to completely control it follows that once the virus is in the neighbourhood it is only a matter of time before outbreaks will occur in a collection kept outside. The best hope for control is to remove all suspect material as soon as suspicion is aroused or at very least isolate the plants at great distance or place them in insect proof cages and hope to be able to collect seed from which to start fresh uncontaminated populations. It is believed that the virus is not carried in the non-fleshy seeds of *Lachenalia*. The virus can be recognised by a mosaic pattern or yellowish-brown streaking produced in the leaves and distorted stems and flowers in badly affected plants.

Bulb Mites

My next most dreaded problem is the bulb mite *Rhizoglyphus echinopus*. I am not quite sure if this pest attacks damaged plants or healthy bulbs. Generally where the bulb mite is found there is also evidence of rot. The question is which came first. The bulbs are in pots and therefore a little more isolated than in neighbouring patches of dirt, but none-the-less it is difficult to see how the mite is spread if not over land. However the problem seems to strike at individual pots somewhat at random. My suspicion is that the bulb mites strike first and that the damaged areas become susceptible to rotting. Some bulbs seem to end up as a cellulose skeleton (see illustration).

Mealy Bugs

One advantage of growing the plants outside in winter is the discouragement of mealy bugs. I cannot say that I have noticed these creatures in any of the pots of *Lachenalia* although I have noticed them on other plants in more protected spots.

Slugs and Snails

It is surprising just what a nuisance these pests can be in such an arid area. With long dry summers how do the slugs and snails do so well? They can quite easily totally defoliate some of the smaller species and seedlings in the collection and need controlling with suitable baits.

Fungi

Lachenalia are reportedly susceptible to fungal disease but I have fortunately not experienced or been aware of such attacks in my collection.

General Discussion

Some species start to grow new roots soon after Christmas (southern hemisphere) particularly if the atmosphere is a little moist and the potting mix becomes a little damp. The first growing tips of the new shoots usually appear about mid March with the first flowers appearing on *L. rubida* from the first week in April. *L. pusilla* follows soon after with *L. aloides* var. *quadricolor* not far behind in late April. An unusual characteristic
of *L. rubida* is that the flowers develop before the leaves similar in some ways to forced hyacinths.

In my collection the last to flower are *L. peersii*, *L. purpureo-caerulea*, *L. contaminata*, and *L. unicolor* that still had their last flowers as late as the first week in December. This gives the genus a flowering period of eight months. The largest number of species flowering at any one time was 38 species or cultivars during September with 29 in August and 31 in October.

The period for which a particular species population stays in flower varies from species to species or cultivar to cultivar. Looking at collected data *L. reflexa* holds the record for the species with the longest flowering season being recorded as commencing flowering at the beginning of June and continuing until October – a total time span of some 16 or 17 weeks. Others to cover fairly extended periods are *L. aloides* var. *quadricolor* 12 weeks. *L. aloides* var. *vanzyliae*, *L. arbuthnotiae*, *L. bachmannii*, *L. bulbifera*, *L. pustulata*, all flowered for 10 weeks, with others like *L. rubida* not far behind. Those that appear to be quickly over are *L. algoensis*, *L. aloides* ‘Nelsonii’, *L. fistulosa*, *L. liliflora*, *L. margaretae*, *L. peersii*, *L. purpureo-caerulea*, *L. pusilla*, *L. stayneri*, *L. trichophylla* and others flowering for only 4 weeks. The extreme seems to be *L. orchioides* var. *parviflora* and *L. ventricosa* which were in flower for only 3 weeks.

Some Less Well Known Species

With so many delightful and varied forms to be found within the genus *Lachenalia* it is quite difficult to make the choice of a few to mention here. I have selected some of the less well-known species that I have been able to photograph over the years and which have a variety of attributes. I will not make a detailed description but rather comment on points of interest in a number of species and varieties.

L. algoensis

Schonl.

Possibly a species for the collector as the flowers would not be considered by most as very outstanding being largely green shading to almost white at the base. The flowers are erect and have very short pedicels making a fairly tight flower spike. For me the flowering period only lasts from late September through August, which is short by comparison with many other species. For the collector it certainly has a charm that makes it worth growing.

L. arbuthnotiae W. F. Barker

Unlike *algoensis* this species flowered from late August through to early November with showy yellow flowers that turn a dull red as they age. The spike is quite dense and generally longer than many. The flowers are upwards of horizontal with a pedicel that is so short the flowers almost clasp the rachis. With the added attraction of scented flowers this species would have to be regarded as one of the most desirable in collections. As well as the yellow flowered form I have one that has almost cream flowers which also turn dull red on aging.

L. bulbifera (Cyrillo) Engl.

Once sold under the synonym *L. pendula* Ait., this species has been the main commercial competitor of *L. aloides* species and cultivars. Its bright red pendulous flowers making a striking display particularly when planted in mass. The colour of the flowers varies from orange through scarlet to crimson. They also vary in flower length and the amount of purple and green on the tips of the outer perianth segments and on the slightly longer inner segments. The leaves also generally have dark green or purple...
marking on their broad surface. The bulbs of this species tend to be among the largest in the genera. Flowering for me has been from early June to early September over a number of plants and years.

L. juncifolia var. *campanulata* W. F. Barker

In my collection this variety of *L. juncifolia* flowers for a relatively short period in late September and early October. Unlike *L. juncifolia* var. *juncifolia* this variety has open bell shaped flowers that although rather small are nevertheless very attractive. The flowers are much paler than *juncifolia* being almost white with the main colour being in the rose purple gibbosities and keel on the inner perianth segments. The bulbs are generally very small, being only a few millimetres in diameter, and are easily overlooked when sorting through the potting mix at the end of the season. The leaves are semi-terete and can be mistaken for grass by the less experienced collector.

L. capensis W. F. Barker

With its almost white scented flowers this species is certainly worthy of inclusion in a collection. During the life of the inflorescence there are a number of other pale colours that can be distinguished from the pale purple tips of the juvenile flowers to the very pale blue bases of the outer perianth segments and pale yellow of the gibbosities and aging outer perianth segments. The flowers become brown as they reach senescence. For me the flowering time has been quite short and late in the season, being right at the end of October and the first three weeks of November.

L. carnosa Bak.

Once known as *L. ovatifolia* L. Guthrie, this species has attractive small flowers in which the inner perianth segments are tipped with a broad magenta band. The outer segments are a sort of dirty white with a tinge of pale blue at the base and the gibbosities are green. The leaves are different from many Lachenalia in that they are broader and have pronounced depressed veins running their whole length. This is one of the species that I give extra drainage to by increasing the quantity of sharp sand in the potting mix. Flowering times extend from mid July to the end of September.

L. framesii W. F. Barker

This is a delightful small species with a quite striking inflorescence consisting of greenish yellow outer perianth segments and protruding inner segments that have recurved magenta tips. The one photographed had a brilliant electric blue tip to the rachis and to the bases of the sterile top flowers. It flowers in
the period between the third week in August and the second week in October.

L. orchioides (L.) Ait. var. glaucina (Jacq.) W. F. Barker

For many years this variety was known as *Lachenalia glaucina* but due to botanical naming precedence eventually settled as *L. orchioides* var. *glaucina*. The purple flowers make this variety a striking specimen and well worthy of inclusion in a collection. For me this variety flowers between the third week in September and the first week in November, putting it towards the end of the flowering season for *Lachenalia*.

L. hirta (Thunb.) Thunb.

Generally the flowers do not make this species stand out in a collection as the colours are not vivid but it is none-the-less quite charming. The flowers have outer perianth segments that are pale blue at their base shading to yellow with brown gibbosities. The single narrow leaf of this species is striking in the strong purple horizontal banding towards the base and the hairs on the margins and reverse of the side (hence the name *hirta*). My examples have displayed a short flowering season from the third week in October to the first week in November.

L. juncifolia Bak. var. *juncifolia*

This variety of *L. juncifolia* has proven itself more robust than *L. j. var. campanulata* in my collection. As a result of its tendency to multiply freely over the years I have ended up with many more pots of this variety. The flowers consist of outer perianth segments which have a blush tinge at their base grading to pink and finally a rose-purple tip and gibbosities. The inner segments, which are largely hidden, have the same dark rose-purple tips showing between the outer segments. The flowering season has been fairly short for me being the third week in September to the second week in October.

L. liliflora Jacq.

The form that I am growing displays almost white flowers with greenish brown gibbosities on the outer perianth segments, and purplish tips on the inner segments. It is one of the later flowering species producing flowers for me from the third week in October to the second week in November.

L. namaquensis Schltr. Ex W. F. Barker

This species produces striking magenta flowers which are quite eye catching. The outer perianth segments have a tinge of blue at the base but then shade through a pink magenta to a deep magenta at the tips. The gibbosities are magenta and
green. The magenta inner segments protrude beyond the outer segments and flare out adding to the colour mass. Flowering occurs from the third week in September until the first week in November.

L. orthopetala Jacq.

Another white flowered species with very distinctive dark brown gibbosities adding contrast. The peduncle is also a contrasting deep maroon which helps set off the white flowers. This seems quite a tolerant species having been reliable for some years in the collection. The leaves are grass like but fleshy with a deep central channel. It flowers at a similar time to *L. namaquensis*, that is, the third week in September to the first week in November.

L. pusilla Jacq.

Leaf pattern is somewhat uncharacteristic in this species. Four to six leaves are produced in a prostrate rosette and may vary in shape from linear to lanceolate. The peduncle or main flower stem is very short resulting in flowers opening at ground level. This appearance is probably why the species was at one stage included in the genus *Polyxena*. As the seed mature the peduncle extends raising the seed capsules above the plant to presumably aid in seed dispersal. My specimens have flowered from the third week in April to the third week in May. Due to its geometry this species is probably best suited to cultivation in pots or raised containers.

L. reflexa Thunb.

If yellow is your colour this species might be for you. Unlike most *Lachenalia* the flowers are born upright on a peduncle that only pushes the flowers just above the foliage. The plants are also smaller than most other *Lachenalia* making it ideal for pot culture or in an area where the competition is not too fierce. For me this species has flowered over an extended period, on different plants, stretching from the first week in June to the second week in October. This is somewhat longer than claimed in other texts and I have no record as to whether the phenomenon was caused by other influences such as late planting.

L. rubida Jacq.

For those who wish to have the first *Lachenalia* to flower this is probably the one. It is certainly the first to flower with me having appeared as early as the first week in April and extending through to the fourth week in June. The two photographs show how the flowers may vary in the colouring of the tips of the inner perianth segments. The photographs show the bright pink spotted version as opposed to the solid pink or ruby-red colouring also found in this
species. This is one of the most common species and has been available for many years in the bulb trade. It is well worth including in any collection and is relatively easy to cultivate.

L. schelpei W. F. Barker
Probably not likely to be grown by other than the most ardent Lachenalia enthusiasts. The flower colour is probably as close to a camouflage as one could get being mottled in various greens along with maroon to brown markings on the gibbosities and tips of the inner segments. My records are rather incomplete in terms of flowering time with just a mention of flowers in August.

L. splendida Diels
At one time known as *L. roodeae* Phillips this species has quite striking flowers of purple or dark lilac colour. A group of plants growing together in a pot are quite an eye-catching spectacle. My plants flower at the end of July and during August.

L. elegans W. F. Barker var. suaveolens W. F. Barke
Four varieties of *L. elegans* have been identified all with characteristic urceolate (urn-shaped) flowers. The colouring in the varieties differs quite markedly, with *L. elegans* var. *suaveolens* being the most colourful as it is largely pink with deep maroon towards the tips of the perianth segments and in the gibbosities. The margins of the inner segments are pale pink to white. My specimens flower from the second week in August to the second week in October.

L. trichophylla Bak.
A most unusual *Lachenalia* and quite a curiosity. This species would be quite difficult to mistake as it has one or possibly two leaves that are covered with stellate hairs. Two forms have been identified with one having both short and long hairs and the other only having very short hairs. The leaves tend to lie on or just above the surface of the soil. The flowers on my plants are all well spaced on the peduncle and have distinct pedicels (stalks). The flower colour starts as pink near the base and then white and finally yellow with green gibbosities. Flowering occurs from the fourth week in July to the third week in August.

L. aloides (L.f.) Engl. var. vanzyliae W. F. Barker
This member of the *aloides* group is unusual in having flowers of a most
unusual colour combination. The outer perianth segments are graded from pale blue at the base to a yellowish green at the tips with green gibbosities. The protruding inner segments are also yellowish green but have white margins. It certainly causes visitors to comment. Cultivation requirements are similar to the rest of the aloidies group. If it is not repotted and fed every few years I find the plants become crowded and stunted and produce small flower spikes. Flowering times for me have been in the range from the fourth in August to the first week in November.

L. viridiflora W. F. Barker

This is another species that surprises visitors by its unusual flower colour. Although its name suggests a green flower one would be quite wrong to expect any ordinary green. The books describe the green as viridian green and looking at the photograph one can see that there is a good deal of blue included. Compared with other Lachenalia the colouring is remarkably uniform over the entire flower with just the tips of both inner and outer segments being markedly darker. It flowers relatively early in the season and for me appears around the second week in May and finishes at the end of June.

Biography

A member of the International Bulb Society since 1985 Don has been collecting ‘bulbous’ plants for over thirty years both in his native Britain and for the last 23 years in Australia. His initial interest was focused on the Amaryllidaceae family but as a result of the availability of seed of *Lachenalia* a collection of this genus grew. In 1988 Don’s collection of *Lachenalia* was registered with the Ornamental Plant Conservation Association of Australia. Don is currently chairman of the Scientific and Collections Sub-committee of the OPCA. Since his semi retirement Don has been trying to devote more time to revitalising his collection of Lachenalia which in recent years suffered from the competition created by the need to keep up to date in a career teaching electronics and computer systems.